数据可视化是什么

TOP1 308

数据可视化,是关于数据视觉表现形式的科学技术研究。其中,这种数据的视觉表现形式被定义为,一种以某种概要形式抽提出来的信息,包括相应信息单位的各种属性和变量。

数据可视化,是关于数据视觉表现形式的科学技术研究。其中,这种数据的视觉表现形式被定义为,一种以某种概要形式抽提出来的信息,包括相应信息单位的各种属性和变量。

它是一个处于不断演变之中的概念,其边界在不断地扩大。主要指的是技术上较为高级的技术方法,而这些技术方法允许利用图形、图像处理、计算机视觉以及用户界面,通过表达、建模以及对立体、表面、属性以及动画的显示,对数据加以可视化解释。与立体建模之类的特殊技术方法相比,数据可视化所涵盖的技术方法要广泛得多。

概述

数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息。但是,这并不就意味着数据可视化就一定因为要实现其功能用途而令人感到枯燥乏味,或者是为了看上去绚丽多彩而显得极端复杂。为了有效地传达思想概念,美学形式与功能需要齐头并进,通过直观地传达关键的方面与特征,从而实现对于相当稀疏而又复杂的数据集的深入洞察。然而,设计人员往往并不能很好地把握设计与功能之间的平衡,从而创造出华而不实的数据可视化形式,无法达到其主要目的,也就是传达与沟通信息。

数据可视化与信息图形、信息可视化、科学可视化以及统计图形密切相关。当前,在研究、教学和开发领域,数据可视化乃是一个极为活跃而又关键的方面。“数据可视化”这条术语实现了成熟的科学可视化领域与较年轻的信息可视化领域的统一。

概念

数据可视化技术包含以下几个基本概念:

①数据空间:是由 n 维属性和 m 个元素组成的数据集所构成的多维信息空间;

②数据开发:是指利用一定的算法和工具对数据进行定量的推演和计算;

③数据分析:指对多维数据进行切片、块、旋转等动作剖析数据,从而能多角度多侧面观察数据;

④数据可视化:是指将大型数据集中的数据以图形图像形式表示,并利用数据分析和开发工具发现其中未知信息的处理过程。

数据可视化已经提出了许多方法,这些方法根据其可视化的原理不同可以划分为基于几何的技术、面向像素技术、基于图标的技术、基于层次的技术、基于图像的技术和分布式技术等等。

主要应用

报表类,如 JReport,Excel,水晶报表,FineReport,ActiveReports 报表等。

BI 分析工具,如 Style Intelligence、BO,BIEE, 象形科技 ETHINK,Yonghong Z-Suite 等。

国内的数据可视化工具,有 BDP 商业数据平台-个人版,大数据魔镜,数据观,FineBI 商业智能软件等。

基本思想

数据可视化技术的基本思想,是将数据库中每一个数据项作为单个图元元素表示,大量的数据集构成数据图像,同时将数据的各个属性值以多维数据的形式表示,可以从不同的维度观察数据,从而对数据进行更深入的观察和分析。

基本手段

数据可视化主要是借助于图形化手段,清晰有效地传达与沟通信息。但是,这并不就意味着,数据可视化就一定因为要实现其功能用途而令人感到枯燥乏味,或者是为了看上去绚丽多彩而显得极端复杂。

为了有效地传达思想概念,美学形式与功能需要齐头并进,通过直观地传达关键的方面与特征,从而实现对于相当稀疏而又复杂的数据集的深入洞察。

然而,设计人员往往并不能很好地把握设计与功能之间的平衡,从而创造出华而不实的数据可视化形式,无法达到其主要目的,也就是传达与沟通信息。

数据可视化与信息图形、信息可视化、科学可视化以及统计图形密切相关。当前,在研究、教学和开发领域,数据可视化乃是一个极为活跃而又关键的方面。“数据可视化”这条术语实现了成熟的科学可视化领域与较年轻的信息可视化领域的统一。

适用范围

关于数据可视化的适用范围,存在着不同的划分方法。一个常见的关注焦点就是信息的呈现。

迈克尔·弗兰德利(2008),提出了数据可视化的两个主要的组成部分:统计图形和主题图。

《Data Visualization: Modern Approaches》(意为“数据可视化:现代方法”)(2007),概括阐述了数据可视化的下列主题 :

1)思维导图

2)新闻的显示

3)数据的显示

4)连接的显示

5)网站的显示

6)文章与资源

7)工具与服务

所有这些主题全都与图形设计和信息表达密切相关。

另一方面,Frits H. Post (2002)则从计算机科学的视角,将这一领域划分为如下多个子领域:

1)可视化算法与技术方法

2)立体可视化

3)信息可视化

4)多分辨率方法

5)建模技术方法

6)交互技术方法与体系架构

数据可视化的成功,应归于其背后基本思想的完备性。依据数据及其内在模式和关系,利用计算机生成的图像来获得深入认识和知识。其第二个前提就是利用人类感觉系统的广阔带宽来操纵和解释错综复杂的过程、涉及不同学科领域的数据集以及来源多样的大型抽象数据集合的模拟。这些思想和概念极其重要,对于计算科学与工程方法学以及管理活动都有着精深而又广泛的影响。《Data Visualization: The State of the Art》(意为“数据可视化:尖端技术水平”)一书当中重点强调了各种应用领域与它们各自所特有的问题求解可视化技术方法之间的相互作用。

相关分析

数据采集

数据采集(有时缩写为 DAQ 或 DAS),又称为“数据获取”或“数据收集”,是指对现实世界进行采样,以便产生可供计算机处理的数据的过程。通常,数据采集过程之中包括为了获得所需信息,对于信号和波形进行采集并对它们加以处理的步骤。数据采集系统的组成元件当中包括用于将测量参数转换成为电信号的传感器,而这些电信号则是由数据采集硬件来负责获取的。

数据分析

数据分析是指为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。数据分析与数据挖掘密切相关,但数据挖掘往往倾向于关注较大型的数据集,较少侧重于推理,且常常采用的是最初为另外一种不同目的而采集的数据。在统计学领域,有些人将数据分析划分为描述性统计分析、探索性数据分析以及验证性数据分析;其中,探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧重于已有假设的证实或证伪。

数据分析的类型包括:

1)探索性数据分析:是指为了形成值得假设的检验而对数据进行分析的一种方法,是对传统统计学假设检验手段的补充。该方法由美国著名统计学家约翰·图基命名。

2)定性数据分析:又称为“定性资料分析”、“定性研究”或者“质性研究资料分析”,是指对诸如词语、照片、观察结果之类的非数值型数据(或者说资料)的分析。

2010 年后数据可视化工具基本以表格,图形(chart),地图等可视化元素为主,数据可进行过滤,钻取,数据联动,跳转,高亮等分析手段做动态分析。

可视化工具可以提供多样的数据展现形式,多样的图形渲染形式,丰富的人机交互方式,支持商业逻辑的动态脚本引擎等等。

不同于一般的 Dashboard 或者 Reporting 产品,永洪科技的 BI 前端是发现型的:交互手段丰富,分析功能强大。用户可以进一步与数据互动(Interactive),过滤(Filter)、钻取(Drill)、刷取(Brush)、关联(Associate)、变换(Transform)等等技术,让用户能够:掌握信息,发现问题,找到答案,并采取行动。


最后,推荐我们的管理工具给大家。

回复

我来回复
  • 暂无回复内容

联系我们
关注微信
关注微信
分享本页
返回顶部