区别是:流数据是一组顺序、大量、快速、连续到达的数据序列,一般情况下,流数据可被视为一个随时间延续而无限增长的动态数据集合。时间序列数据是在不同时间上收集到的数据,用于所描述现象随时间变化的情况。
流数据
流数据是一组顺序、大量、快速、连续到达的数据序列,一般情况下,流数据可被视为一个随时间延续而无限增长的动态数据集合。应用于网络监控、传感器网络、航空航天、气象测控和金融服务等领域。
流数据是指由数千个数据源持续生成的数据,通常也同时以数据记录的形式发送,规模较小(约几千字节)。流数据包括多种数据,例如客户使用您的移动或 Web 应用程序生成的日志文件、网购数据、游戏内玩家活动、社交网站信息、金融交易大厅或地理空间服务,以及来自数据中心内所连接设备或仪器的遥测数据。
此类数据需要按记录或根据滑动时间窗口按顺序进行递增式处理,可用于多种分析,包括关联、聚合、筛选和取样。借助此类分析得出的信息,公司得以深入了解其业务和客户活动的方方面面,例如服务使用情况(用于计量/计费)、服务器活动、网站点击量以及设备、人员和实物的地理位置,从而迅速对新情况做出响应。例如,公司可以持续分析社交媒体流,从而跟踪公众对其品牌和产品的看法的变化,并在必要时及时做出反应。
时间序列数据
时间序列数据(time series data)是在不同时间上收集到的数据,用于所描述现象随时间变化的情况。这类数据反映了某一事物、现象等随时间的变化状态或程度。
很多计量经济学的模型也用到了时间序列数据。比如2000—2005年我国的国内生产总值数据就是时间序列数据。
我国国内生产总值从1949到2009的变化就是时间序列数据。时间序列数据可作季度数据、月度数据等细分,其中很有代表性的季度时间序列模型就是因为其数据具有四季一样变化规律,虽然变化周期不尽相同,但是整体的变化趋势都是按照周期变化的。
时间序列是统计学专业课程之一。对时间序列的研究一般要建立在一定的计量经济学基础上,计量经济学已有涉及时间序列模型。
延伸阅读:
流数据优势及特点
对于持续生成动态新数据的大多数场景,采用流数据处理是有利的。这种处理方法适用于大多数行业和大数据使用案例。通常情况下,各公司一开始都是从简单的应用程序开始,例如收集系统日志以及进行滚动计算最小值-最大值等初级处理。然后,这些应用程序逐渐发展为需要完成更加复杂的近实时处理。最初,应用程序可能通过处理数据流生成简单的报告,然后再执行一些简单的响应操作,例如在关键指标超出一定阀值时发出警报。最终,这些应用程序会执行形式更加复杂的数据分析,如应用机器学习算法,还会从数据中提取更深入的信息。经过一段时间后,开始应用复杂的流事件处理算法,如利用时间窗口衰减算法查找最近的热门电影,进一步丰富了信息内容。
流数据具有四个特点:
1)数据实时到达;
2)数据到达次序独立,不受应用系统所控制;
3)数据规模宏大且不能预知其最大值;
4)数据一经处理,除非特意保存,否则不能被再次取出处理,或者再次提取数据代价昂贵。
文章标题:流数据和时间序列数据的区别是什么,发布者:小编,转载请注明出处:https://worktile.com/kb/p/38990