区别是:取模和取余两个概念有重叠的部分但又不完全一致。主要的区别在于对负整数进行除法运算时操作不同。取模主要是用于计算机术语中。取余则更多是数学概念。取余,遵循尽可能让商向0靠近的原则。取模,遵循尽可能让商向负无穷靠近的原则。
取余,遵循尽可能让商向0靠近的原则
取模,遵循尽可能让商向负无穷靠近的原则
取余运算与取模运算概念有重叠的部分但又不完全一致。主要的区别在于对负整数进行除法运算时操作不同。
取模主要是用于计算机术语中。取余则更多是数学概念。
模运算在数论和程序设计中都有着广泛的应用,奇偶数的判别到素数的判别,从模幂运算到最大公约数的求法,从孙子问题到凯撒密码问题,无不充斥着模运算的身影。虽然很多数论教材上对模运算都有一定的介绍,但多数都是以纯理论为主,对于模运算在程序设计中的应用涉及不多。
取模运算是求两个数相除的余数。
取模运算(“Modulo Operation”)和取余运算(“Remainder Operation ”)两个概念有重叠的部分但又不完全一致。主要的区别在于对负整数进行除法运算时操作不同。取模主要是用于计算机术语中。取余则更多是数学概念。
模运算在数论和程序设计中都有着广泛的应用,奇偶数的判别到素数的判别,从模幂运算到最大公约数的求法,从孙子问题到凯撒密码问题,无不充斥着模运算的身影。虽然很多数论教材上对模运算都有一定的介绍,但多数都是以纯理论为主,对于模运算在程序设计中的应用涉及不多。
延伸阅读:
取模运算的应用
判别奇偶数
奇偶数的判别是模运算最基本的应用,也非常简单。
已知一个整数n对2取模,如果余数为0,则表示n为偶数,否则n为奇数。
判别素数
一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。例如 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数或合数。
判断某个自然数是否是素数最常用的方法就是试除法——用不比该自然数的平方根大的正整数去除这个自然数,若该自然数能被整除,则说明其非素数。
求最大公约数
求最大公约数最常见的方法是欧几里德算法(又称辗转相除法),其计算原理依赖于定理:gcd(a,b) = gcd(b,a mod b)
水仙花数
水仙花数是指一个 n 位正整数 ( n≥3 ),它的每个位上的数字的 n 次幂之和等于它本身。(例如:1^3 + 5^3+ 3^3 = 153)。
水仙花数只是自幂数的一种,严格来说三位数的3次幂数才称为水仙花数。
文章标题:编程语言中,取余和取模的区别到底是什么,发布者:小编,转载请注明出处:https://worktile.com/kb/p/38506