人们常用的排序方法主要有10种,包括:1、冒泡排序;2、选择排序;3、插入排序;4、归并排序;5、快速排序;6、堆排序;7、希尔排序;8、计数排序;9、桶排序;10、基数排序。
冒泡排序
冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
选择排序
选择排序是一种简单直观的排序算法,它也是一种交换排序算法,和冒泡排序有一定的相似度,可以认为选择排序是冒泡排序的一种改进。
插入排序
插入排序是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
归并排序
归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。
快速排序
快速排序是一个知名度极高的排序算法,其对于大数据的优异排序性能和相同复杂度算法中相对简单的实现使它注定得到比其他算法更多的宠爱。
堆排序
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆排序就是把最大堆堆顶的最大数取出,将剩余的堆继续调整为最大堆,再次将堆顶的最大数取出,这个过程持续到剩余数只有一个时结束。
希尔排序(插入排序的改良版)
在希尔排序出现之前,计算机界普遍存在“排序算法不可能突破O(n2)”的观点。希尔排序是名列前茅个突破O(n2)的排序算法,它是简单插入排序的改进版。希尔排序的提出,主要基于以下两点:
1、插入排序算法在数组基本有序的情况下,可以近似达到O(n)复杂度,效率极高。
2、但插入排序每次只能将数据移动一位,在数组较大且基本无序的情况下性能会迅速恶化。
计数排序
计数排序不是基于比较的排序算法,其核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。 作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。
桶排序
桶排序又叫箱排序,是计数排序的升级版,它的工作原理是将数组分到有限数量的桶子里,然后对每个桶子再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排序),最后将各个桶中的数据有序的合并起来。
基数排序
基数排序(Radix Sort)是桶排序的扩展,它的基本思想是:将整数按位数切割成不同的数字,然后按每个位数分别比较。
排序过程:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到较高位排序完成以后, 数列就变成一个有序序列。
延伸阅读:
排序算法的评价标准
稳定性是一个特别重要的评估标准。稳定的算法在排序的过程中不会改变元素彼此的位置的相对次序,反之不稳定的排序算法经常会改变这个次序,这是我们不愿意看到的。我们在使用排序算法或者选择排序算法时,更希望这个次序不会改变,更加稳定,所以排序算法的稳定性,是一个特别重要的参数衡量指标依据。就如同空间复杂度和时间复杂度一样,有时候甚至比时间复杂度、空间复杂度更重要一些。所以往往评价一个排序算法的好坏往往可以从下边几个方面入手:
1、时间复杂度
即从序列的初始状态到经过排序算法的变换移位等操作变到最终排序好的结果状态的过程所花费的时间度量。
2、空间复杂度
就是从序列的初始状态经过排序移位变换的过程一直到最终的状态所花费的空间开销。
3、使用场景
排序算法有很多,不同种类的排序算法适合不同种类的情景,可能有时候需要节省空间对时间要求没那么多,反之,有时候则是希望多考虑一些时间,对空间要求没那么高,总之一般都会必须从某一方面做出抉择。
4、稳定性
稳定性是不管考虑时间和空间必须要考虑的问题,往往也是非常重要的影响选择的因素。
本文来自投稿,不代表Worktile社区立场,如若转载,请注明出处:https://worktile.com/kb/p/30524