管理进化

数据挖掘从哪些方面提升


摘要:提升数据挖掘需要从三个方面入手,首先,对业务有深刻的理解,其次,根据业务选择模型,最后,勤于取数训练。

一、对业务有深刻的理解

通常来说,没有深刻的业务理解去做数据挖掘往往是事倍功半,行业的业务理解越透彻,就越能抓住数据中本质的特征,诸如图像识别等场景已经可以靠神经网络来自动查找特征了,但大多数行业领域不行,还是要靠业务专家,多组织一次讨论获取的灵感可能远远好过于在算法上折腾一个月。

而没有更多更好的数据去训练模型,这就是一件十分困难的事情了,一定要相信数据的重要性远远超过算法,很多初级的建模师算法能力很强,但就是做不成事,往往是因为其对于自身企业的数据理解太浅所致,这些都是我们需要注意到的事情。

二、根据业务选择模型

如果数据不变,数据挖掘训练的边际效益并不高,同样的一份数据用不同的算法反复训练,比如F1差值并不是很大,如果要尽快地提升模型的效果,要讲究点方法,尽量遵循业务大于数据,而数据大于算法的优先级。只有遵循了这个优先级,知道那个相对比较重要,那么我们才能够做好模型的选择。

三、勤于取数训练

一般来说,企业的数据挖掘师都需要通过长时间的取数训练,如果能做过数据仓库的更好,这样对于企业的数据体系有个全局的认识,在特征选择时有更多的发挥空间,大数据中最强调的一个特征是维度多,也一定程度说明了数据多样的重要性。同时数据建模师如果不理解运营商的业务和数据,则可能无法想到这个维度。所以,数据挖掘师还是要清楚这些内容的。

推荐阅读:

1.数据挖掘是什么

2.知识库搭建的关键点有哪些

智齿客服