为什么要做数据中台
做数据中台的原因是:在当今互联网时代,用户才是商业战场的中心,为了快速响应用户的需求,借助平台化的力量可以事半功倍。不断快速响应、探索、挖掘、引领用户的需求,才是企业得以生存和持续发展的关键因素。
一、 做数据中台的原因
因为在当今互联网时代,用户才是商业战场的中心,为了快速响应用户的需求,借助平台化的力量可以事半功倍。不断快速响应、探索、挖掘、引领用户的需求,才是企业得以生存和持续发展的关键因素。
目前,数据体量、产业规模以及云计算高速发展所推动的基础设施成本都已不再是问题,大数据能否创造真实的商业价值和回报是大数据企业真正关心的核心问题。
过去,所有大数据企业都在做项目,并没有更多资源把能力沉淀成产品和平台。比如很多可共用的数据服务没有服务化、产品化,很多产品总是做重复的动作。
TalkingData创始人兼首席执行官崔晓波认为,互联网公司之间的战役已经结束了。所有企业主战场不在线上而在线下,不管是互联网巨头还是产业巨头都在思考如何利用互联网、数据和相关技术的能力改变线下产业。而且,选择合作伙伴应该遵循一个原则:愿意真的开放数据,愿意给实体产业赋能。
二、什么是数据中台
数据中台是指通过数据技术,对海量数据进行采集、计算、存储、加工,同时统一标准和口径。
今年,马云说过,数据中台成为大数据行业的热门概念,它最先是从阿里引出的,“很多人会把数据比作“石油”,阿里巴巴要成为全球电子商务的“水电煤”。我们现在搭建的数据中台,就是希望扮演“发电厂”的角色。”
数据中台把数据统一之后,会形成标准数据,再进行存储,形成大数据资产层,进而为客户提供高效服务。这些服务跟企业的业务有较强的关联性,是这个企业独有的且能复用的,它是企业业务和数据的沉淀,其不仅能降低重复建设、减少烟囱式协作的成本,也是差异化竞争优势所在。
数据中台建设的基础还是数据仓库和数据中心,并且在数仓模型的设计上也是一脉传承,之所以我们现在处处推崇数据中台建设及应用,一个是因为数据中台确实有过人之处,另一个是这套模型在阿里体现了巨大的应用价值。
三、数据中台能力
数据资产管理
盘点数据资源、规划数据资源、获取数据资源,并将所有数据资源进行完整呈现;通过元数据信息收集、数据血缘探查、数据权限申请授权等手段,解决"有哪些数据可用"、"到哪里可以找到数据"的难题,并且提升数据资源的利用率。
数据质量管理
数据质量就是保障数据正确性的工具,主要包括这么几部分:一是支持准确性校验规则,二是支持双表校验,三是输出校验报告。
数据模型管理
数据模型管理,主要是为解决架构设计和数据开发的不一致性,是为了约束平台使用者的表名、字段名的规范性,架构师从工具层合理的进行模型分层和统一开发规范,包括2部分,一个是规则配置,另一个是对表名、字段名的定期校验。
构建标签体系
对用户、产品、客商、营销各主题域进行标签提取,将其特征数字化,为后续进行精准 营销和用户画像提供必要条件。着重分析当前需要但是无法获取到的指标,描述使用不便的指标,分析问题原因,绘制数据供应链条;
数据应用规划及实现
数据中台策略的基本理念是,将所有的数据汇聚到数据中台,以后的每个数据应用(无论是指标和分析类的,还是画像类和大数据类的)统统从数据中台获取数据,如果数据中台没有,那么数据中台就负责把数据找来,如果数据中台找不来,就说明当前真没有这个数据,数据应用也就无从展开。