python中DataFrame数据合并merge()和concat()方法怎么用

    merge()

    1.常规合并

    ①方法1

    指定一个参照列,以该列为准,合并其他列。

    import pandas as pddf1 = pd.DataFrame({'id': ['001', '002', '003'],                    'num1': [120, 101, 104],                    'num2': [110, 102, 121],                    'num3': [105, 120, 113]})df2 = pd.DataFrame({'id': ['001', '002', '003'],                    'num4': [80, 86, 79]})print(df1)print("=======================================")print(df2)print("=======================================")df_merge = pd.merge(df1, df2, on='id')print(df_merge)

    python中DataFrame数据合并merge()和concat()方法怎么用

    ②方法2

    要实现该合并,也可以通过索引来合并,即以index列为基准。将left_index 和 right_index 都设置为True
    即可。(left_index 和 right_index 都默认为False,left_index表示左表以左表数据的index为基准, right_index表示右表以右表数据的index为基准。)

    import pandas as pddf1 = pd.DataFrame({'id': ['001', '002', '003'],                    'num1': [120, 101, 104],                    'num2': [110, 102, 121],                    'num3': [105, 120, 113]})df2 = pd.DataFrame({'id': ['001', '002', '003'],                    'num4': [80, 86, 79]})print(df1)print("=======================================")print(df2)print("=======================================")df_merge = pd.merge(df1, df2, left_index=True, right_index=True)print(df_merge)

    python中DataFrame数据合并merge()和concat()方法怎么用

    相比方法①,区别在于,如图,方法②合并出的数据中有重复列。

    重要参数

    pd.merge(right,how=‘inner’, on=“None”, left_on=“None”, right_on=“None”, left_index=False, right_index=False )

    参数 描述
    left 左表,合并对象,DataFrame或Series
    right 右表,合并对象,DataFrame或Series
    how 合并方式,可以是left(左合并), right(右合并), outer(外合并), inner(内合并)
    on 基准列 的列名
    left_on 左表基准列列名
    right_on 右表基准列列名
    left_index 左列是否以index为基准,默认False,否
    right_index 右列是否以index为基准,默认False,否

    其中,left_index与right_index 不能与 on 同时指定。

    合并方式 left right outer inner

    准备数据‘

    新准备一组数据:

    import pandas as pddf1 = pd.DataFrame({'id': ['001', '002', '003'],                    'num1': [120, 101, 104],                    'num2': [110, 102, 121],                    'num3': [105, 120, 113]})df2 = pd.DataFrame({'id': ['001', '004', '003'],                    'num4': [80, 86, 79]})print(df1)print("=======================================")print(df2)print("=======================================")

    python中DataFrame数据合并merge()和concat()方法怎么用

    inner(默认)

    使用来自两个数据集的键的交集

    df_merge = pd.merge(df1, df2, on='id')print(df_merge)

    python中DataFrame数据合并merge()和concat()方法怎么用

    outer

    使用来自两个数据集的键的并集

    df_merge = pd.merge(df1, df2, on='id', how="outer")print(df_merge)

    python中DataFrame数据合并merge()和concat()方法怎么用

    left

    使用来自左数据集的键

    df_merge = pd.merge(df1, df2, on='id', how='left')print(df_merge)

    python中DataFrame数据合并merge()和concat()方法怎么用

    right

    使用来自右数据集的键

    df_merge = pd.merge(df1, df2, on='id', how='right')print(df_merge)

    python中DataFrame数据合并merge()和concat()方法怎么用

    2.多对一合并

    import pandas as pddf1 = pd.DataFrame({'id': ['001', '002', '003'],                    'num1': [120, 101, 104],                    'num2': [110, 102, 121],                    'num3': [105, 120, 113]})df2 = pd.DataFrame({'id': ['001', '001', '003'],                    'num4': [80, 86, 79]})print(df1)print("=======================================")print(df2)print("=======================================")

    python中DataFrame数据合并merge()和concat()方法怎么用

    如图,df2中有重复id1的数据。

    合并

    df_merge = pd.merge(df1, df2, on='id')print(df_merge)

    合并结果如图所示:

    python中DataFrame数据合并merge()和concat()方法怎么用

    依然按照默认的Inner方式,使用来自两个数据集的键的交集。且重复的键的行会在合并结果中体现为多行。

    3.多对多合并

    如图表1和表2中都存在多行id重复的。

    import pandas as pddf1 = pd.DataFrame({'id': ['001', '002', '002', '002', '003'],                    'num1': [120, 101, 104, 114, 123],                    'num2': [110, 102, 121, 113, 126],                    'num3': [105, 120, 113, 124, 128]})df2 = pd.DataFrame({'id': ['001', '001', '002', '003', '001'],                    'num4': [80, 86, 79, 88, 93]})print(df1)print("=======================================")print(df2)print("=======================================")

    python中DataFrame数据合并merge()和concat()方法怎么用

    df_merge = pd.merge(df1, df2, on='id')print(df_merge)

    python中DataFrame数据合并merge()和concat()方法怎么用

    concat()

    pd.concat(objs, axis=0, join=‘outer’, ignore_index:bool=False,keys=None,levels=None,names=None, verify_integrity:bool=False,sort:bool=False,copy:bool=True)

    参数 描述
    objs Series,DataFrame或Panel对象的序列或映射
    axis 默认为0,表示列。如果为1则表示行。
    join 默认为”outer”,也可以为”inner”
    ignore_index 默认为False,表示保留索引(不忽略)。设为True则表示忽略索引。

    其他重要参数通过实例说明。

    1.相同字段的表首位相连

    首先准备三组DataFrame数据:

    import pandas as pddf1 = pd.DataFrame({'id': ['001', '002', '003'],                    'num1': [120, 114, 123],                    'num2': [110, 102, 121],                    'num3': [113, 124, 128]})df2 = pd.DataFrame({'id': ['004', '005'],                    'num1': [120, 101],                    'num2': [113, 126],                    'num3': [105, 128]})df3 = pd.DataFrame({'id': ['007', '008', '009'],                    'num1': [120, 101, 125],                    'num2': [113, 126, 163],                    'num3': [105, 128, 114]})print(df1)print("=======================================")print(df2)print("=======================================")print(df3)

    python中DataFrame数据合并merge()和concat()方法怎么用

    合并

    dfs = [df1, df2, df3]result = pd.concat(dfs)print(result)

    python中DataFrame数据合并merge()和concat()方法怎么用

    如果想要在合并后,标记一下数据都来自于哪张表或者数据的某类别,则也可以给concat加上 参数keys

    result = pd.concat(dfs, keys=['table1', 'table2', 'table3'])print(result)

    python中DataFrame数据合并merge()和concat()方法怎么用

    此时,添加的keys与原来的index组成元组,共同成为新的index。

    print(result.index)

    python中DataFrame数据合并merge()和concat()方法怎么用

    2.横向表合并(行对齐)

    准备两组DataFrame数据:

    import pandas as pddf1 = pd.DataFrame({'num1': [120, 114, 123],                    'num2': [110, 102, 121],                    'num3': [113, 124, 128]}, index=['001', '002', '003'])df2 = pd.DataFrame({'num3': [117, 120, 101, 126],                    'num5': [113, 125, 126, 133],                    'num6': [105, 130, 128, 128]}, index=['002', '003', '004', '005'])print(df1)print("=======================================")print(df2)

    python中DataFrame数据合并merge()和concat()方法怎么用

    当axis为默认值0时:

    result = pd.concat([df1, df2])print(result)

    python中DataFrame数据合并merge()和concat()方法怎么用

    横向合并需要将axis设置为1

    result = pd.concat([df1, df2], axis=1)print(result)

    python中DataFrame数据合并merge()和concat()方法怎么用

    对比以上输出差异。

    • axis=0时,即默认纵向合并时,如果出现重复的行,则会同时体现在结果中

    • axis=1时,即横向合并时,如果出现重复的列,则会同时体现在结果中。

    3.交叉合并

    result = pd.concat([df1, df2], axis=1, join='inner')print(result)

    python中DataFrame数据合并merge()和concat()方法怎么用

    感谢各位的阅读,以上就是“python中DataFrame数据合并merge()和concat()方法怎么用”的内容了,经过本文的学习后,相信大家对python中DataFrame数据合并merge()和concat()方法怎么用这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!

    文章标题:python中DataFrame数据合并merge()和concat()方法怎么用,发布者:亿速云,转载请注明出处:https://worktile.com/kb/p/28497

    (0)
    打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
    亿速云的头像亿速云
    上一篇 2022年9月21日 下午11:07
    下一篇 2022年9月21日 下午11:08

    相关推荐

    • 猫鼠服务器是什么公司

      猫鼠(Cats and Mouse)服务器可能是您要询问的一种服务器类型,或者是一个特定服务器名称的误解,但在知识库中并无明确的记录表示猫鼠服务器代表着一个具体的公司。如果您是在询问一个公司或品牌名为“猫鼠”的服务器供应商,可能需要提供更多信息或者具体的上下文才能得出准确答案。如果您实际上指的是一个…

      2024年4月25日
      7200
    • 推理服务器作用是什么

      摘要 推理服务器的作用是1、执行模型推理任务、2、优化推理性能、3、降低延迟、4、提高吞吐量、5、支持多种模型格式、6、提供模型管理与扩展功能。 在这些核心功能中,优化推理性能尤为关键,因为它直接关系到模型部署后的效率和稳定性。推理服务器通过使用专门的算法和硬件加速技术,大幅提高处理速度,同时保持高…

      2024年4月25日
      7500
    • 服务器管理的好处是什么

      摘要 服务器管理的好处包括: 1.提高安全性、2.增强性能、3.确保数据完整性、4.优化资源利用,等重要方面。特别是提高安全性,这是服务器管理中的关键部分,为防止未授权访问、数据泄露和其他潜在威胁,定期对服务器进行维护和更新至关重要。此外,安装安全软件、监控系统漏洞、及时打补丁和执行严格的访问控制策…

      2024年4月25日
      7600
    • 云服务器存储资料是什么

      摘要 云服务器存储资料是1、通过网络访问的远程服务器上存储的数据,其依赖于2、云计算技术,使得数据存取更加灵活和高效。在这两点中,通过网络访问的远程服务器存储意味着用户无需对物理硬件进行管理或投入高额的初期成本,而是通过互联网连接到远程数据中心,实现数据存储和管理。这种模式不仅降低了企业或个人的技术…

      2024年4月25日
      8100
    • 下挂的服务器叫什么

      摘要:下挂的服务器通常被称作1、边缘服务器或2、即服务外设。其中,边缘服务器主要用于提高网络服务的访问速度和提升用户体验。通过布局在接近最终用户的地理位置上,这种服务器能够缓存内容,减少数据传输的延迟,加快载入速度,有效缓解主服务器的负荷。边缘服务器尤其适用于内容交付网络(CDN)和大数据分析等场景…

      2024年4月25日
      9500
    注册PingCode 在线客服
    站长微信
    站长微信
    电话联系

    400-800-1024

    工作日9:30-21:00在线

    分享本页
    返回顶部