torch.Tensor
torch.Tensor
是一种包含单一数据类型元素的多维矩阵,类似于 numpy 的 array
。
Tensor 可以使用 torch.tensor() 转换 Python 的 list 或序列数据生成,生成的是dtype
默认是 torch.FloatTensor
。
注意
torch.tensor()
总是拷贝 data。如果你有一个 Tensor data 并且仅仅想改变它的requires_grad
属性,可用requires_grad_()
或者detach()
来避免拷贝。如果你有一个numpy
数组并且想避免拷贝,请使用torch.as_tensor()
。
1,指定数据类型的 Tensor 可以通过传递参数 torch.dtype
和/或者 torch.device
到构造函数生成:
注意为了改变已有的 tensor 的 torch.device 和/或者 torch.dtype, 考虑使用
to()
方法.
>>> torch.ones([2,3], dtype=torch.float64, device="cuda:0")tensor([[1., 1., 1.], [1., 1., 1.]], device='cuda:0', dtype=torch.float64)>>> torch.ones([2,3], dtype=torch.float32)tensor([[1., 1., 1.], [1., 1., 1.]])
2,Tensor 的内容可以通过 Python索引或者切片访问以及修改:
>>> matrix = torch.tensor([[2,3,4],[5,6,7]])>>> print(matrix[1][2])tensor(7)>>> matrix[1][2] = 9>>> print(matrix)tensor([[2, 3, 4], [5, 6, 9]])
3,使用 torch.Tensor.item()
或者 int()
方法从只有一个值的 Tensor中获取 Python Number:
>>> x = torch.tensor([[4.5]])>>> xtensor([[4.5000]])>>> x.item()4.5>>> int(x)4
4,Tensor可以通过参数 requires_grad=True
创建, 这样 torch.autograd
会记录相关的运算实现自动求导:
>>> x = torch.tensor([[1., -1.], [1., 1.]], requires_grad=True)>>> out = x.pow(2).sum()>>> out.backward()>>> x.gradtensor([[ 2.0000, -2.0000], [ 2.0000, 2.0000]])
5,每一个 tensor都有一个相应的 torch.Storage
保存其数据。tensor 类提供了一个多维的、strided 视图, 并定义了数值操作。
Tensor 数据类型
Torch 定义了七种 CPU tensor 类型和八种 GPU tensor 类型:
torch.Tensor
是默认的 tensor 类型(torch.FloatTensor
)的简称,即 32
位浮点数数据类型。
Tensor 的属性
Tensor 有很多属性,包括数据类型、Tensor 的维度、Tensor 的尺寸。
-
数据类型:可通过改变 torch.tensor() 方法的 dtype 参数值,来设定不同的 tensor 数据类型。
-
维度:不同类型的数据可以用不同维度(dimension)的张量来表示。标量为 0 维张量,向量为 1 维张量,矩阵为 2 维张量。彩色图像有 rgb 三个通道,可以表示为 3 维张量。视频还有时间维,可以表示为 4 维张量,有几个中括号 [ 维度就是几。可使用 dim() 方法 获取 tensor 的维度。
-
尺寸:可以使用 shape属性或者 size()方法查看张量在每一维的长度,可以使用 view()方法或者reshape() 方法改变张量的尺寸。
样例代码如下:
matrix = torch.tensor([[[1,2,3,4],[5,6,7,8]], [[5,4,6,7], [5,6,8,9]]], dtype = torch.float64)print(matrix) # 打印 tensorprint(matrix.dtype) # 打印 tensor 数据类型print(matrix.dim()) # 打印 tensor 维度print(matrix.size()) # 打印 tensor 尺寸print(matrix.shape) # 打印 tensor 尺寸matrix2 = matrix.view(4, 2, 2) # 改变 tensor 尺寸print(matrix2)
程序输出结果如下:
view 和 reshape 的区别
两个方法都是用来改变 tensor 的 shape,view() 只适合对满足连续性条件(contiguous
)的 tensor 进行操作,而 reshape() 同时还可以对不满足连续性条件的 tensor 进行操作。在满足 tensor 连续性条件(contiguous
)时,a.reshape() 返回的结果与a.view() 相同,都不会开辟新内存空间;不满足 contiguous
时, 直接使用 view() 方法会失败,reshape()
依然有用,但是会重新开辟内存空间,不与之前的 tensor 共享内存,即返回的是 ”副本“(等价于先调用 contiguous()
方法再使用 view()
方法)。
更多理解参考这篇文章
Tensor 与 ndarray
1,张量和 numpy 数组。可以用 .numpy()
方法从 Tensor 得到 numpy 数组,也可以用 torch.from_numpy
从 numpy 数组得到Tensor。这两种方法关联的 Tensor 和 numpy 数组是共享数据内存的。可以用张量的 clone
方法拷贝张量,中断这种关联。
arr = np.random.rand(4,5)print(type(arr))tensor1 = torch.from_numpy(arr)print(type(tensor1))arr1 = tensor1.numpy()print(type(arr1))"""<class 'numpy.ndarray'><class 'torch.Tensor'><class 'numpy.ndarray'>"""
2,item()
方法和 tolist()
方法可以将张量转换成 Python 数值和数值列表
# item方法和tolist方法可以将张量转换成Python数值和数值列表scalar = torch.tensor(5) # 标量s = scalar.item()print(s)print(type(s))tensor = torch.rand(3,2) # 矩阵t = tensor.tolist()print(t)print(type(t))"""1.0<class 'float'>[[0.8211846351623535, 0.20020723342895508], [0.011571824550628662, 0.2906131148338318]]<class 'list'>"""
创建 Tensor
创建 tensor ,可以传入数据或者维度,torch.tensor() 方法只能传入数据,torch.Tensor() 方法既可以传入数据也可以传维度,强烈建议 tensor() 传数据,Tensor() 传维度,否则易搞混。
传入维度的方法
方法名 | 方法功能 | 备注 |
---|---|---|
torch.rand(*sizes, out=None) → Tensor |
返回一个张量,包含了从区间 [0, 1) 的均匀分布中抽取的一组随机数。张量的形状由参数sizes定义。 |
推荐 |
torch.randn(*sizes, out=None) → Tensor |
返回一个张量,包含了从标准正态分布(均值为0,方差为1,即高斯白噪声)中抽取的一组随机数。张量的形状由参数sizes定义。 | 不推荐 |
torch.normal(means, std, out=None) → Tensor |
返回一个张量,包含了从指定均值 means 和标准差 std 的离散正态分布中抽取的一组随机数。标准差 std 是一个张量,包含每个输出元素相关的正态分布标准差。 |
多种形式,建议看源码 |
torch.rand_like(a) |
根据数据 a 的 shape 来生成随机数据 |
不常用 |
torch.randint(low=0, high, size) |
生成指定范围(low, hight )和 size 的随机整数数据 |
常用 |
torch.full([2, 2], 4) |
生成给定维度,全部数据相等的数据 | 不常用 |
torch.arange(start=0, end, step=1, *, out=None) |
生成指定间隔的数据 | 易用常用 |
torch.ones(*size, *, out=None) |
生成给定 size 且值全为1 的矩阵数据 | 简单 |
zeros()/zeros_like()/eye() |
全 0 的 tensor 和 对角矩阵 |
简单 |
样例代码:
>>> torch.rand([1,1,3,3])tensor([[[[0.3005, 0.6891, 0.4628], [0.4808, 0.8968, 0.5237], [0.4417, 0.2479, 0.0175]]]])>>> torch.normal(2, 3, size=(1, 4))tensor([[3.6851, 3.2853, 1.8538, 3.5181]])>>> torch.full([2, 2], 4)tensor([[4, 4], [4, 4]])>>> torch.arange(0,10,2)tensor([0, 2, 4, 6, 8])>>> torch.eye(3,3)tensor([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]])
关于“Pytorch中的tensor数据结构实例代码分析”这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对“Pytorch中的tensor数据结构实例代码分析”知识都有一定的了解,大家如果还想学习更多知识,欢迎关注亿速云行业资讯频道。
文章标题:Pytorch中的tensor数据结构实例代码分析,发布者:亿速云,转载请注明出处:https://worktile.com/kb/p/24906